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Multiscale feature extraction from the visual 
environment in an active vision system 

Y.Machrouh1, J.-S.Liénard1, P.Tarroux1,2  

Abstract. This paper presents a visual architecture able to identify salient re-
gions in a visual scene and to use them to focus on interesting locations. It is in-
spired by the ability of natural vision systems to perform a differential process-
ing of spatial frequencies both in time and space and to focus their attention on 
a very local part of the visual scene. The present paper analyzes how this dif-
ferential processing of spatial frequencies is able to provide an artificial system 
with the information required to perform an exploration of its visual world 
based on a center-surround distinction of the external scene. It shows how the 
salient locations can be gathered on the basis of their similarities to form a high 
level representation of the visual scene. 

Introduction 
The use of active mechanisms seems to be a way to improve the abilities of machine 
vision systems. Active systems search salient features in the visual scene through a 
dynamic exploration. They can direct their search toward the most meaningful stimuli 
using attentional mechanisms leading to a reduction of the computational load [1,2].  
Thus, natural vision is a behavioral task, not a passive filtering process. An explora-
tion of the visual world that relates perception and action allows to label the external 
space with natural landmarks associated with the exploratory behavior. In this re-
spect, the relationships between agents and natural systems suggest that certain as-
pects of natural perception can be successfully incorporated in artificial agents. 
Otherwise, during the past few years, several studies have been devoted to the under-
standing of the essence of vision considered as an information processing mechanism 
[4]. This approach is grounded on Barlow’s proposal [5] which stated that the main 
organizational principle in visual systems is the reduction of the redundancy of the 
incoming stimuli. 
These considerations, issued form information theory, led several authors to analyze 
the statistical organization of natural images. They demonstrated that natural images 
(those which do not exhibit any specific bias in their pixel distribution) have a sta-
tionary statistics and an auto-similar structure. As a consequence of these characteris-
tics, their power spectra fall off as 1/f2 [8]. 
In this context, different authors [6,14] demonstrated that a way to transform the 
initial redundancy was to improve the statistical independence of the image descrip-
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tors. According to this hypothesis, an image can be viewed as a linear superposition 
of several underlying independent sources. 
The filters that provide this statistical independence can be computed through the 
application of the source separation adequate algorithms (Infomax, BSS, ICA). 
One can show [6,14] that the optimal filters computed according to these principles 
are multiscale local orientation detectors similar to a Gabor wavelet basis [7]. 
However, although a lot of work has been devoted to the understanding of these theo-
retical bases of information processing in natural visual system, few attempts have 
been made thus far to use these principles in artificial vision systems. Practical im-
plementations impose some limitations that require to analyze what is really obtained 
with simplified models based on these general principles. On the other hand, no arti-
ficial vision system has been designed to include both multiscale wavelet analysis and 
differential spatial and temporal processing of spatial frequencies. A prerequisite to 
the design of such a system is to be able to characterize the information obtained from 
a bank of wavelet filters in different frequency channels. 
We thus analyzed here the information issued from various combinations of high and 
low frequencies of statistically uncorrelated signals. Our aim was to determine how to 
build a multivariate representation of the scene that allows a dynamic grouping of 
image points on the basis of their similarities in a given context and for a given task. 

System overview 

Image data 

A set of 11 natural images selected from a larger database was used in the present 
study. Pictures that include too many traces of human activity (buildings, roads…) 
were avoided. Only images with similar initial resolution (around 256x512 pixels) 
were retained. 

 
Figure 1. Sample image from the set of natural images used in the present work.(original size 
512x256) 

The images were discarded when their power spectrum did not fit the 1/f2 characteris-
tics [8]. Figure 1 shows one typical example of an image used in the present study. 
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Initial filters 

A guideline for this work was to retain among the filtering characteristics of the pri-
mate visual system those which can be useful for the elaboration of an artificial sys-
tem of situated and active vision. 
Two characteristics have attracted our attention: the elimination of image redundancy 
in the processing steps designed to maximize the statistical independence of the scene 
descriptors and the differences in the processing of spatial frequencies between the 
center and the surround of the visual field. 
The visual scene was filtered by a first bank of Gabor wavelets in four spatial orienta-
tions and four spatial frequencies (1/8, 1/16, 1/32, 1/64). For each initial image we 
got 32 resulting images (two for each quadrature pair of each of the 16 Gabor filter). 
This multiscale processing was implemented using a Burt pyramid according to the 
method proposed by Guérin-Dugué [10]. 
For the purpose of this study and in order to obtain a complete view of what informa-
tion is obtained from a detector during a systematic exploration of the visual scene, 
the whole scene was filtered by the entire bank of filters. In an operational system 
with a focal vision only a small part of these computations are needed. 

Simple cells – Complex cells 

An important distinction between the use of wavelets in image processing and the 
filtering steps in the visual system is the presence of strong non-linearities in the 
latter. Primary visual cortex shows several cell types according to the non linearities 
they implement. Simple cells (SC) perform an additive combination of their inputs. 
They respond to an oriented stimulus localized at the center of their receptive field. 
The so-called complex cells (CC), on the contrary, exhibit a kind of translational 
invariance and respond to a stimulus whatever its position in the receptive field of the 
cell. 
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Figure 2. Effects of filtering of the statistical independance criterion. Init: Initial image, SC: 
Simple Cells, CC: Complex cells 
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Other cell types (mainly in extrastriate cortex) combine these outputs in order to be 
sensitive to curvature and terminations (end-stop cells). 
To model simple cells we used additive units with a zero threshold ramp transfer 
function which amounts to take into account only the positive part of Gabor filters. 
The inhibitory part is indeed not transmitted by these cells. 
According to Field [5], we modeled complex cells output as the norm of quadrature 
pair Gabor filters. We verified that this implementation effectively leads to a reduc-
tion of the redundancy for both cell types by a comparison of the kurtosis before and 
after filtering (Figure 2). Kurtosis is indeed a good measurement of the statistical 
independence of a set of detectors [9]. 
A third type of detector with large receptive fields and designed to provide a contex-
tual information will be considered in the following section. 
In order to build a set of higher level detectors suitable for the extraction of complex 
features we performed a Karhunen-Loeve transform of the outputs. A set of 1744 
image patches (5x5) extracted randomly from the initial 11 natural images was used 
to build these spaces. We thus obtained 8 eigen-vectors at the output of simple cells 
and 4 eigen-vectors at the output of complex cells for each frequency band. These 
computations amount to a non-linear principal component projection of the initial 
image performed with two different types of non linearities.  

Global energy – Local context 

As stated above, we assumed the existence of detectors sensitive to the global energy 
in the different orientations. In an image region corresponding to the fovea, the sys-
tem computes a global energy vector for each of the four orientations. This vector is 
used to build a signature that can be used to classify the region. Such an analysis 
provides us with contextual information [11,13]. We consider the identification of 
these contexts as a prerequisite for the recognition of objects. The importance of 
contextual information  in natural systems can be deduced from the experimental 
observation that object recognition is effectively facilitated if the objects are viewed 
in congruent contexts [13]. 
Thus, the system computes three output sets on each image: (i) an output directly 
issued from the Gabor filters filtered by a ramp function (SC), (ii) an output giving 
the local energy at the output of these filters analogous to the output of complex cells 
(CC) and (iii) a large field output providing contextual information. 

Results 

Simple cells 

For each image point the system provides a high dimensional vector made of 32 ori-
entation components spread over 4 frequency bands for SC detectors and 16 orienta-
tion components in 4 frequency bands for CC detectors. 
Although Gabor detectors maximize the statistical independence of their outputs, in 
practice they are not strictly independent. The analysis of these outputs through a 
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Karhunen-Loeve transform leads to a data representation basis that sorts the represen-
tations according to their greatest statistical significance. 
The first axis corresponding to the highest eigen-value shows highly variable details 
from one scene to another (figure 3 left). It emphasizes details related to the structures 
present in the scene. This probably results from the fact that these structures are cor-
related in a given scene due to the correlation induced by the presence of objects. 
They are uncorrelated from one scene to another because  each scene has a different 
organization. 

 

 
Figure 3. Output of SC filters: projection of the output along the first (top) and the last 
(botttom) eigen-vector of the output space 

On the contrary, details filtered by the axes corresponding to the lowest eigen-values 
(figure 3 right) are expected to weakly contribute to the total variance. They corre-
spond to features most frequently observed from one image to another.  

 

Figure 4. Eigen-images from CC filters. The images are computed as the projection of the CC 
outputs on the eigen-vectors defining the output space of these filters. Columns range from 
high to low frequencies (from left to right: 1/8 to 1/64). Lines show the filter outputs along the 
principal components (top: highest variance, bottom : lowest variance). 

The same region revealed by the first projection axis (Figure 3 left)(% initial vari-
ance : 29.4%) of the KL transform and the last projection axis (Figure 3 right)(% 
initial variance : 2.47%) shows that, while the first axis tends to reveal long edges that 
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contribute significantly to the general structure of the objects, the last axis tends to 
reveal termination and curvature points that are not characteristic of the image struc-
ture. 
We obtain a complex set of features along the different axes. The most representative 
of the presence of objects correspond to the first axes. On the others, features repre-
senting complex combinations of stimuli frequently observed in natural images seem 
to be sorted according to their level of abstractness. 

Complex cells 

The same transform can be applied to the output of complex cells. Figure 4 shows the 
main axes of the KL transform following the computation of the Gabor norm for 
different spatial frequency bands. 
The projection axes (rows in the figure) extract distinct features from the initial image 
as well within the same frequency band (rows) as between different frequency bands 
(columns)(note that for instance the building vanishes in axis 3 projection. Figure 4 
3rd row). These features are entirely different from those extracted by the output 
transform of SC.  
One can observe that high frequency details disappear in low frequency channels 
except for objects which exhibit frequency similarities (high frequency details re-
peated over a large area like the building).  
Objects in the foreground, which are apparently characterized by low frequencies, 
appear in low frequency channels while they are not represented in high frequency 
band. Low frequency channels are able to distinguish features that have some spatial 
extension (the building or the foreground bushes). 
A comparison of the lowest frequency channels (Figure 4 right column) shows that 
the locations revealed on the different axes are largely uncorrelated, thus correspond-
ing to different points of view on the scene. 
The lesser number of low frequency features (figure 4 right column) defines a small 
set of landmarks able to characterize the visual space and to guide exploratory sac-
cades. This low-frequency information is the only one available in the periphery of 
the visual field.  

Correlation between channels 

One of the important questions raised by this analysis is how different are the indices 
obtained from the different frequency channels. If two channels correspond to the 
same combination of basic features, the corresponding eigen-vectors should be simi-
lar. Thus, a measure of the similarity between the eigen-vectors in different frequency 
bands is given by the product of the eigen-matrices in these frequency bands. Using 
this method we compared the output spaces of respectively simple and complex cells 
for different frequency bands. We obtained strongly different results for the compari-
son of output spaces in SC channels and in CC channels. 
For simple cells, the correlation between the axes of the spaces corresponding to 
different frequencies are low and distributed over the different axes (data not shown) 
while in complex cells the respectively high and low frequency bands exhibit simi-
larities (table 1). 
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Table 1. Analysis of the output space for CC detectors. The eigen-vectors corresponding to the 
same axes show a very high correlation between respectively high and low frequency channels. 
The cross-correlation between eigen vectors corresponding to different axes is usually low (not 
reprinted here) 

Frequencies 
Axes f0/f1 f0/f2 f0/f3 f1/f2 f1/f3 f2/f3 
F1 0.990 0.442 0.410 0,365 0,330 0,996 
F2 0.997 0.517 0.501 0.507 0.486 0.997 
F3 0.991 0.363 0.370 0.425 0.424 0.995 
F4 0.994 0.656 0,653 0.641 0.630 0.996 

 
These results lead to the conclusion that the combination of simple cells outputs 
across the frequency bands underline uncorrelated details, whereas the outputs in high 
(resp. low) frequency bands correspond most frequently to similar stimuli. 
A pyramidal decomposition of the scene allows to combine these characteristics to 
identify spatial positions characterized by spectral compositions as diverse as possi-
ble. 
This diversity seems to lead to a greater separability of these spatial positions and 
seems to be able to facilitate objet discrimination. 

Identification of global contexts 

Cells sensitive to low frequencies have large receptive fields. However in higher 
layers of the visual system cell types that encode intermediate representations also 
exhibit larger receptive fields. They combine the output of the cells in the preceding 
layers and gather the information coming from brighter regions of the visual field. 
A vector that combines the global energy components associated with each frequency 
channel provides a suitable code for representing the whole fovea. It has been shown 
that such vectors can be used to classify visual scenes according to the context they 
belong to [11,13]. In the present study, we build such detectors in computing the 
mean energy provided by the output of CC cells in the four frequency bands already 
mentioned. 
To determine how spatial indices provided by the channels previously described can 
be used for the identification of interesting locations in the scene, we performed the 
following experiment:  
A set of salient locations are computed from the eigen-images defined previously. 
Points in the image are selected at random or on the basis of these salient locations. 
At each point the mean energies of the CC outputs in an image window correspond-
ing to the fovea were computed for each frequency. We thus obtained an energy vec-
tor for each of the selected point. A PCA analysis was performed on this set of vec-
tors. One should keep in mind that this use of PCA differs from its use in the previous 
sections. The Karhunen-Loeve transform was previously used as a self-organization 
tool leading to a set of linear combination defining complex features frequently oc-
curring in natural images. In this section, PCA should be considered as a mean to 
analyze the structure of the space at the output of the SC and CC filters. 
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Figure 5. Clustering of fixation points corresponding to different regions of the visual scene. 
Clusters were identified on the first three principal components and the fixation points corre-
sponding to each cluster plotted on the diagrams at their position in the initial image (a). (b) 
fixation points obtained from the second eigen-image and the second frequency channel shown 
Fig. 4. The other diagrams show the location of some clusters gathering salient points on the 
basis of their spatial frequencies and orientation properties: (c) trees and bushes, (d) building, 
(e) strong curvature at the border between hill and sky (f) another region of interest at the same 
limit 

When the locations in the image are selected at random no obvious structure were 
observed in the PCA space. On the contrary, when they are selected on the basis of 
their saliencies, clusters were identified in the PCA space. Figure 5 show the loca-
tions of some of these clusters on the original image. Points corresponding to a simi-
lar context are grouped into the same cluster. The example shows for instance the 
ability of the method to separate fixation points on the basis of their natural or artifi-
cial nature (Figure 5 c and d). 

It should be noted that Figure 5 shows only a small sample of the structures that 
can be identified. Only 1/16 of the available dimensions is presented here. Thus, the 
method transforms the initial image into a huge set of clusters each characterized by 
similar spectral signatures. 

 Discussion and conclusion 
The visual filter system proposed in the present work produces a set of features that 
can be used to guide the exploration of the external scene. The features extracted by 
the non linear combination of SC channels seem rather suitable for object recognition. 
Features obtained from the computation of local energy (CC channels) allow a parti-
tion of the image into salient regions arranged according to their frequency composi-
tion. The computation of the global energy provides local context information and 
can be used to segment the scene on the basis of its spectral characteristics. 
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Thus, the output of this filtering system provides on one hand locations of interest 
able to guide an attentional system and on the other hand clusters of locations ar-
ranged according to their spectral signature. 
This approach can be considered as an extension of textures segmentation methods 
[3] to the question of the identification of contexts and an extension of the method 
proposed by Hérault [11] to the analysis of local contexts. However it emphasizes the 
relativity of the context notion; the segmentation of the visual scene in (i) a global 
context and (ii) objects is an oversimplification 
The visual scene is thus scattered into a set of projections on several disjoint sub-
spaces. In each of these subspaces, salient points form clusters according to their 
similarities. These salient points are projected into disjoint sets of clusters and the 
corresponding objects can thus be grouped according to different points of view. 
An object class is not characterized by a unique high level representation, but by the 
transient association of a subset of properties. This association can thus dynamically 
depend on the current task. Objects are not considered as similar and grouped on the 
basis of their intrinsic properties but according to those of their properties linked to a 
given goal. 
A further step in this work will be to demonstrate how such coding abilities could 
indeed facilitate object classification. This requires to incorporate the present algo-
rithms in the control architecture of a perceptive agent such that it can build a hierar-
chy of perception-action links based on the dynamic grouping of the perceived fea-
tures. 
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