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Abstract 
 
In this paper, we propose an algorithm for computer 

vision that reconciliates the two main approaches used up 
to now in the field. A large part of the image processing 
and understandings methods rely on straightforward 
algorithmic approaches, but robotic applications and 
artificial intelligence have inspired methods based on 
exploratory behavior and active vision. In this paper, we 
show that it is possible to design a system able to perform 
complex tasks on an image or a video sequence by the 
means of exploratory techniques usually developed for 
computer vision without incurring a too high computing 
cost. 

 
1. Introduction 

 
Classical image analysis and computer vision 

techniques have been designed to extract the content of an 
image or a visual scene using a reconstructionnist 
approach. Computer vision is thus grounded on the 
mentalist conception of cognition. Another approach has 
emphasized the role of interaction in the study of visual 
processes [1]. This viewpoint has lead to the active vision 
paradigm of robotics [2] [3]. We propose here to use the 
same paradigm of active vision for the analysis of fixed 
images or video sequences. We thus introduce the 
concept of perceptual agent, a software agent designed to 
actively search information in image and video sequences 
databases. These exploratory mechanisms give rise to 
interesting algorithms and the use of an agent architecture 
allows more adaptive modes of interaction. To drive an 
active vision system, we need a mechanism to identify 
salient regions in the visual scene. Most of the algorithms 
proposed for the computation of saliency maps are 
bottom-up [4] [5]. We propose here to identify a first set 
of interest points using such a bottom-up mechanism and 
to use a top-down one for target recognition. The set of 
points computed at low resolution over the whole visual 
field is used to give the focus to each potentially 
interesting region one at a time. The top-down 
information is then used within the focused region to 
identify or reject putative targets. We thus propose 
solutions to the following questions:  

• How to compute the points of interest in a visual 
scene?  

• How to combine the information coming from 
the scene with the memory content of the system and its 
internal expectancies?  

We show that when the search process is biased by 
low-resolution information related to the target, the 
number of potentially interesting points dramatically 
decreases and the efficiency of the search process 
improves. This approach leads to an efficient algorithm of 
target selection due to the low computational cost of the 
exploratory phase. We can parallel this mechanism with 
the one at work in natural vision systems in which the 
search for a given target could be driven by a simplified 
description of the target, the recognition process being 
made easier because it operates only on focused regions. 

 
2. Model 

 
The interest points are defined as high-energy regions. 

They are computed through a bottom-up filtering process 
using a bank of Gabor filters described by: 
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e  the Gabor kernel used to convolve 
the image. 

θ,kΩ is a vector defining the preferred orientations of 
the filter such that θθ Rkk Ω=Ω , where θR  is a rotation 
matrix and ( )0kk ω=Ω .  

In the present work { }43,2,4,0 πππθ ∈  and 
{ }41,81,161,321∈k  
Only low frequencies are used to orient the 

exploratory bottom-up mechanism, while the complete 
frequency range is retained for the definition of the goal 
to be retrieved in top-down exploration. 

The second step in the computation of the saliencies is 
the extraction of higher-level characteristics from the 
output of the Gabor filters. As stated above, the system is 
based on a recognition mechanism running once focused 
on a region of interest. Therefore, the potential target is 



always focused when recognition occurs. Thus, we have 
to compute saliencies as if the targets were always 
centred. The suitable method to obtain an optimal code is 
to use Independent Component Analysis (ICA) [6] [7] 
[8]. Several authors have shown the efficiency of 
Principal Component Analysis under the hypothesis that 
the images are centred [9] [10] [11]. 

We extract random small image patches from a 
statistically significant set of natural images. Each patch 
has the same size as the foveal region. From each patch, 
we compute as many signature vectors { }θ,kk r=v  as the 
number of frequency bands according to the following 
equation 
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where m and n are the row and the column numbers of 
the patches.  

A PCA was applied to each of these vectors for each 
spatial frequency channel according to vUz τ=  where U  
is an orthogonal projection matrix such that τzz  is 

diagonal. 
The multi-resolution technique used to compute the 

kv vectors is based on a Gaussian pyramid and is similar 
to the one proposed by [12]. We thus obtain four vectors 
for each frequency band. The resulting projection space is 
significant of the statistical regularities observed in the 
subset of natural images used here. Experiments 
performed with various subsets do not show significant 
differences. The saliencies are computed for each position 
in the visual field as the projection of the kv  vectors on 
the corresponding axis of the PCA. We have shown in 
[13] that the salient points computed by this method differ 

according to the considered axis. In this study only the 
first eigen-vector at low-resolution are used. 

Further studies are necessary to determine more 
precisely the nature of the features emphasized by such 
projections. Experiments with several images demonstrate 
that these features mainly consist in termination and 
curvature points. Some of the features extracted from a 
test image according to the first PCA axis are rotation-
invariant curvature points (Fig 1).  

These salient points are used to control the 
exploration. We use two methods: 

(i) The bottom-up control uses only 
information extracted from the visual scene in a 
pre-attentional way. 

(ii) The top-down control implements an 
attentional mechanism driven by a previously 
memorized information on the target. 

We tested this architecture to find the targets similar 
to the one pointed by the user. When the user points to a 
region, the system finds the nearest salient point, focus on 
it and computes the low-resolution bottom-up salient 
points in its visual field. It then focus on the most salient 
of these points and computes a new vector v representing 
a complete description of the target at this point in terms 
of orientations and spatial frequencies. This vector is used 
to compute the recognition score of the target. Two 
descriptions have been tested, one from the average of the 
Gabor norms, the other being simply the concatenation of 
the Gabor norm image vectors covering the foveal area of 
the system. In this study, these vectors are of dimension 
12 (3 spatial frequencies, 4 orientations). 

In top-down mode, the system performs a low-
resolution comparison to retain only salient points 
superior to a given threshold. It modulates the natural 
saliency of the considered point according to the low-
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Figure 1. Bottom-up detection of interest points. The 
figure shows that the detection of interest points is made on 
the basis of curvature and termination characteristics. 
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Figure 2. The system modulates the natural saliency of the 
considered point according the low-resolution characteristics 
of the searched target. 



resolution characteristics of the searched target (figure 2). 
Two kinds of comparison algorithms were tested:  

(i) a comparison of the energy vectors 
computed from the low-resolution part of the 
multi-resolution analysis respectively from the 
salient point and the target representation  

(ii) a direct comparison of the low-
frequency images of the salient region and of the 
target.  

These comparisons are computed using a radial basis 

function 2
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similarity code. 
 

3. Results 
 

3.1. Exploration 
 

In this experiment, we tested these techniques on a 
face identification task. The user points a face in a scene 
and the task of the system is to find similar patterns 
across the image. On this task, we tested the three 
methods presented above (bottom-up, top-down energy 
(TDE) and top-down vector (TDV)). 

In the bottom-up mode, the system is driven by the 
natural saliencies computed from the scene. These 
saliencies are sorted according to their decreasing 
intensities in such a way that the system begins its 
exploration with the highest intense saliency. The 
similarity score obtained in this case range from 0.1 to 
1.0. 10% of the points have a similarity score in the range 
0.9-1.0, while 17% are in the range 0.8-0.9. Most of the 
points have a score in the range 0.6-0.9. 

In top-down mode, the system is guided through high-
level information. In TDE mode, the similarity scores 
range in 0.3-1.0. 14% of the points lie between 1.0 and 
0.9 while 22% range in 0.9-0.8. Most of the visited points 
have a similarity score between 0.7 and 1.0 (figure 3). 

In TDV mode, there is a drop in the variability of the 
similarity score. 65% of the points have a similarity score 
in the range 0.9-1.0 and 10% between 0.8 and 0.9. The 
most visited points lie between 0.9 and 1.0. The use of a 
top-down information leads to a significant reduction in 
the number of visited points (234 for the bottom-up 
exploration, 107 for TDE and 31 in TDV for the example 

image Figure 4). 
When this experiment is repeated with various images 

(up to 20 images), faces always had similarity score 
greater than 0.8. We thus decided to adopt this value as a 
decision threshold separating faces and non-faces 
locations. Consequently, we can compute an error rate for 
the different experiments from a comparison between the 
answer of the system (a similarity score greater than 0.8 
being now considered as a positive answer) and the real 
nature of the target.  

It results from these investigations that only 27% of 
the visited points are faces in the bottom-up mode while 
this percentage drops out to 36% in the TDE mode and 
reaches 74% in the TDV mode. On the other hand, in the 
bottom-up mode the error rate is 47%. It decreases to 
26% and 30% in TDE and TDV respectively (Figure 5). 
The TDV method gives rise to the best results. 

One mandatory specification of this kind of system is 
its robustness according to the variations of illumination. 
We tested the behaviour of the system in the case of the 
search for identical targets in a series of video images. 
This property is indeed especially important in the case 
we want to follow the same object through a video 
sequence. We have used the TDV mode to search for a 
zone pointed by the user in a mid-illuminated scene 

 

0,0%
10,0%
20,0%
30,0%
40,0%
50,0%
60,0%
70,0%

0 0,2 0,4 0,6 0,8 1

Similarity score

%
 o

f p
oi

nt
s

Bottom_Up
TDE
TDV

Figure 3. Percent of visited points according to the 
similarity score. The figure shows that a large portion of 
visited points have a low similarity score in bottom-up 
exploration while in TDE and in TDV, the visited points 
exhibit greater similarity scores. The image shows the 
result obtained with the face recognition task in TDV 
mode. 
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Figure 4. The evolution of the number of points 
explored by the system in the three investigated modes. 



(image mean intensity 151.9 expressed in grey level) 
through a set of homologous images the illumination of 
which ranges form 69.24 to 185.69  

Figure 6 left shows the variation of the similarity 
score according to the illumination for homologous points 

(i.e. points corresponding to the same target: in order to 
detect false negatives). 

Figure 6 right shows the same result for heterologous 
points (i.e. points corresponding to different targets: in 
order to detect false positives). The mean score remains 
approximately constant in function of illumination. Its 
variance increases with illumination but the 
discrimination ability of the system (measured by the 
threshold between the two curves) is preserved. 

 
4. Discussion and conclusion 

 
The system presented here is a first step toward the 

implementation of software agents performing more 
complex task on images. In its present form it is based on 
two principles: (i) the selection of salient points used to 
guide exploratory saccades, (ii) the combination of 
bottom-up and top-down information to bias the 
saliencies in favour of the searched target. This last 
modulation reduces the computational load of the system. 
The identification of the salient points is indeed not based 
on a saliency map computed on the whole scene [14] [4] 
[15] but limited to the visual field and computed at low-
resolution. The proposed architecture allows to perform 
any search and exploration task. It is indeed independent 
of the type and size of image and of the searched target. 

The system retains only the potentially interesting 
points. In this sense, it works on a sparse representation 
of the scene consisting in an index of the interesting 
locations. The full information corresponding to these 
locations is never coded into the memory of the system. It 
is retrieved from the internal reference, the world itself 
been used as an external memory [16]. Note that it is only 
adapted to the use of stable landmarks. It could raise new 
questions in the case of video and robotics applications. 
However, it implements the first principles of the sensori-
motor theory of perception proposed by O’Regan and 
Noë [17]. This mechanism also relates to the notion of 
deictic pointers proposed by Ballard and col. [18]. The 
two step search procedure based on low-frequencies first 
and on a full representation in a second time, implements 
a kind of hypothesis verification mechanism, the 
identification of a target being viewed as a reasoning 
procedure. 

Our goal in this study was to build an exploratory 
vision architecture able to work in real-time. This 
constraint explains the limited number of preferred 
directions used and the relative simplicity of the coding 
method. Though the retained information does not allow a 
complete reconstruction of the initial scene, it is sufficient 
to allow a correct exploration mechanism.  

The reduction of the computational load is critical to 
achieve this goal. The multi-resolution technique used 
here, which performs the complex processing steps on 
previously selected regions, provides the mechanism to 

Figure 5. Evolution of the ratio between faces and 
non-faces in the visited points (upper values) and 
evolution of the recognition error rate (lower values). 
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Figure 6. Robustness to the variations of 
illumination. A video sequence with a continuous 
variation in luminance has been used to follow the 
detection of homologous interest points from image 
to image. The figure shows the mean detection score 
for target (left) and non target (right) superimposed 
with the luminance curve (expressed in grey level). 



overcome these constraints. The advantages of this 
approach, which distinguishes low-resolution and large-
field processing from high-resolution focused 
computations, is twofold. It indeed reduces the need to 
complex computation for the exploration process and 
perhaps more importantly clearly separates the 
exploration and exploitation steps that constitute the 
behaviour of the system.  

The proposed method is not scale-invariant. However, 
the coding method is inherently invariant in translation. 
We showed that the identified saliencies are rotation-
invariant. Thus, they can be used for matching 3D views 
of complex objects characterised by a set of local features 
[19]. However, additional work is required to use this 
approach for object recognition and to compare it to more 
global approaches [20].  

We make the hypothesis that the identification 
processes happening in peripheral and central vision are 
quite different. In peripheral vision, we do not need to 
cope with invariance, since the representation available is 
simplified, partial and sparse. It is only made of a set of 
pointers useful for driving action and, in biological 
system, the most evolutionary primitive part of the visual 
system. From these regions, it seems to be impossible to 
get a complex representation of objects. On the contrary, 
the central part of the visual field provides the 
information for building complex object representations. 
However, since the targets are centred, the translational 
invariance problem disappears.  

The approach presented here points out that image 
analysis can be viewed as an active process and that, far 
from increasing the complexity of the problem, this 
dynamical perspective helps find out solutions based on a 
form of reasoning actively using image information. 

Another interesting fallout to consider systems 
endowed with those abilities is that they can be viewed as 
autonomous agents. The interactive process in which the 
agent is involved can thus be improved using learning 
techniques popular within the agent’s or robotics 
communities. Among these methods, the use of 
reinforcement learning is presently under investigation in 
our laboratory. 
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